

Mid Term Review

LIMIT

 $\lim_{x o a} f(x)$

- 1. $\lim_{x
 ightarrow a^+} f(x) \stackrel{?}{=} \lim_{x
 ightarrow a^-} f(x)$
- 2. Squeeze Theorem: Find g(x) and h(x) such that

1.
$$h(x) \leq f(x) \leq g(x)$$

- 2. $\lim_{x o a} h(x) = \lim_{x o a} g(x)$
- 3. L' Hopital's Rule:

Form:
$$\frac{0}{0}, \frac{\infty}{\infty}, \infty - \infty, 0 \cdot \infty, 0^0, 1^\infty, \infty^0$$

Notice: $\lim_{x \to a} \frac{f(x)}{g(x)}$: check form and f and g are diff
Ex. $\lim_{x \to 0} |x|^x$
Sol. For $x > 0, |x|^x = x^x$
 $\lim_{x \to 0^+} |x|^x = \lim_{x \to 0^+} x^x = \lim_{x \to 0^+} e^{x \ln x} = e^{\lim_{x \to 0^+} x \ln x}$
 $= \lim_{x \to 0^+} x \ln x = \lim_{x \to 0^+} \frac{\ln x}{\frac{1}{x}} = \lim_{x \to 0^+} \frac{\frac{1}{x}}{-x^{-2}}$
 $= \lim_{x \to 0^+} -x = 0$

So,
$$\lim_{x\to 0^+} |x|^x = e^0 = 1$$

For $x < 0$, $|x|^x = (-x)^x$
 $\lim_{x\to 0^-} |x|^x = \lim_{x\to 0^-} (-x)^x = \lim_{x\to 0^-} e^{x\ln - x} = e^{\lim_{x\to 0^-} x\ln - x}$
 $= \lim_{x\to 0^-} x\ln - x = \lim_{x\to 0^-} \frac{\ln - x}{\frac{1}{x}} = \lim_{x\to 0^-} \frac{\frac{1}{x}}{-x^{-2}}$
 $= \lim_{x\to 0^-} -x = 0$
So, $\lim_{x\to 0^-} |x|^x = e^0 = 1$
Therefore, $\lim_{x\to 0} |x|^x = 1$
 $\lim_{x\to 0} \frac{\sin x}{x} = 1$, $\lim_{x\to 0} \frac{1 - \cos x}{x} = 0$
Continuity

- If f is continuous at x=a
- 1. f(a) is defined
- 2. $\lim_{x o 0} f(x)$ exists
- 3. $\lim_{x o 0} f(x) = f(a)$
- 6. Asymptotes

4.

5.

- 1. Vertical
 - f(c) is not defined

check: $\lim_{x o c^+} f(x) = \pm \infty$ or $\lim_{x o c^-} f(x) = \pm \infty$

2. Horizontal

$$\lim_{x o\infty}f(x)$$
 and $\lim_{x o-\infty}f(x)$

3. Slant

$$\lim_{x
ightarrow\pm\infty}rac{f(x)}{x}=m
eq 0; \qquad \lim_{x
ightarrow\pm\infty}[f(x)-mx]=b$$
 $\Rightarrow y=mx+b$ is a slant asymptote

DIFFERENTIATION

1. f is differentiable at x=a

if
$$\lim_{x
ightarrow a}rac{f(x)-f(a)}{x-a}$$
 or $\lim_{h
ightarrow 0}rac{f(a+h)-f(a)}{h}=f'(a)$

- 2. Product rule: $(f \cdot g)' = f'g + fg'$ Quotient rule: $\left(rac{f}{g}
 ight)' = rac{f'g - fg'}{g^2}$
- 3. Chain rule

$$egin{aligned} F(x) &= f(g(x)) \ F'(x) &= f'(g(x)) \cdot g'(x) \end{aligned}$$

- 4. Implicit differentiation
- 5. Differentiation of inverse function

$$f$$
 is differentiable, $g=f^{-1}.$ Find $g^{\prime}(a)$

1. Find b such that f(b)=a
ightarrow g(a)=b

2.
$$g'(a) = rac{1}{f'(b)}$$

3. $g'(a) = rac{1}{f'(g(a))}$

6. Logarithmic differentiation

Ex.
$$f(x) = \frac{1}{3}(x-1)^{\frac{1}{3}}(x+1)^{-\frac{2}{3}}(3x+5); f'(x) =?$$

Sol. Set $y = f(x)$
 $\ln |y| = \ln |f(x)|$
 $(\ln |y|)' = \left(\frac{1}{3}\ln |x-1| - \frac{4}{3}\ln |x+1| + \ln |3x+5|\right)$
 $\frac{y'}{y} = \frac{1}{3} \cdot \frac{1}{x-1} - \frac{4}{3} \cdot \frac{1}{x+1} + \frac{3}{3x+5}$
 $y' = \frac{16}{9}(x-1)^{-\frac{2}{3}}(x+1)^{-\frac{7}{3}}$

7. Linear approximation of f(x) at x = a

$$egin{aligned} L(x) &= f(a) + f'(a) + f'(a)(x-a) \ f(c) &pprox f(a) + f'(a)(c-a) \end{aligned}$$

- 8. Related change problem
- 9. Optimal problem (maximum value, minimum value)

- 1. c is a critical point of f(x) if
 - 1. f(c) is defined
 - 2. f'(c) = 0 or f'(c) does not exist
- 2. First derivative test

- 1. f'(c) = 0, f''(c) < 0: f has a local max at c
- 2. $f^{\prime}(c)=0, f^{\prime\prime}(c)>0: f$ has a local min at c

4. Mean Value Theorem

f is continuous on [a,b] and is differentiable on (a,b), the there is a $c\in (a,b)$ such that f(b)-f(a)=f'(c)(b-a)

- 5. Increasing/decreasing
 - 1. f'(x)>0 on I o f is increasing on I
 - 2. f'(x) < 0 on I o f is decreasing on I
 - 3. If f'(x) < 0 or f'(x) > 0, then the function is one-to-one and has the inverse function
- 6. Concavity
 - 1. f''(x) > 0 on I, the graph of f is concave upward on I.
 - 2. $f^{\prime\prime}(x) < 0$ on I, the graph of f is concave downward on I.
- 7. Inflection point

