

Mid Term Review

LIMIT

$\lim _{x \rightarrow a} f(x)$

1. $\lim _{x \rightarrow a^{+}} f(x) \stackrel{?}{=} \lim _{x \rightarrow a^{-}} f(x)$
2. Squeeze Theorem: Find $g(x)$ and $h(x)$ such that
3. $h(x) \leq f(x) \leq g(x)$
4. $\lim _{x \rightarrow a} h(x)=\lim _{x \rightarrow a} g(x)$
5. L' Hopital's Rule:

Form: $\frac{0}{0}, \frac{\infty}{\infty}, \infty-\infty, 0 \cdot \infty, 0^{0}, 1^{\infty}, \infty^{0}$
Notice: $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$: check form and f and g are diff
Ex. $\lim _{x \rightarrow 0}|x|^{x}$
Sol. For $x>0,|x|^{x}=x^{x}$

$$
\begin{aligned}
\lim _{x \rightarrow 0^{+}}|x|^{x} & =\lim _{x \rightarrow 0^{+}} x^{x}=\lim _{x \rightarrow 0^{+}} e^{x \ln x}=e^{\lim _{x \rightarrow 0^{+}} x \ln x} \\
& =\lim _{x \rightarrow 0^{+}} x \ln x=\lim _{x \rightarrow 0^{+}} \frac{\ln x}{\frac{1}{x}}=\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{-x^{-2}} \\
& =\lim _{x \rightarrow 0^{+}}-x=0
\end{aligned}
$$

So, $\lim _{x \rightarrow 0^{+}}|x|^{x}=e^{0}=1$
For $x<0,|x|^{x}=(-x)^{x}$

$$
\begin{aligned}
\lim _{x \rightarrow 0^{-}}|x|^{x} & =\lim _{x \rightarrow 0^{-}}(-x)^{x}=\lim _{x \rightarrow 0^{-}} e^{x \ln -x}=e^{\lim _{x \rightarrow 0^{-}} x \ln -x} \\
& =\lim _{x \rightarrow 0^{-}} x \ln -x=\lim _{x \rightarrow 0^{-}} \frac{\ln -x}{\frac{1}{x}}=\lim _{x \rightarrow 0^{-}} \frac{\frac{1}{x}}{-x^{-2}} \\
& =\lim _{x \rightarrow 0^{-}}-x=0
\end{aligned}
$$

So, $\lim _{x \rightarrow 0^{-}}|x|^{x}=e^{0}=1$
Therefore, $\lim _{x \rightarrow 0}|x|^{x}=1$
4. $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1, \lim _{x \rightarrow 0} \frac{1-\cos x}{x}=0$
5. Continuity

If f is continuous at $x=a$

1. $f(a)$ is defined
2. $\lim _{x \rightarrow 0} f(x)$ exists
3. $\lim _{x \rightarrow 0} f(x)=f(a)$
4. Asymptotes
5. Vertical
$f(c)$ is not defined

$$
\text { check: } \lim _{x \rightarrow c^{+}} f(x)= \pm \infty \text { or } \lim _{x \rightarrow c^{-}} f(x)= \pm \infty
$$

2. Horizontal

$$
\lim _{x \rightarrow \infty} f(x) \text { and } \lim _{x \rightarrow-\infty} f(x)
$$

3. Slant

$$
\begin{aligned}
& \lim _{x \rightarrow \pm \infty} \frac{f(x)}{x}=m \neq 0 ; \quad \lim _{x \rightarrow \pm \infty}[f(x)-m x]=b \\
& \Rightarrow y=m x+b \text { is a slant asymptote }
\end{aligned}
$$

DIFFERENTIATION

1. f is differentiable at $x=a$

$$
\text { if } \lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \text { or } \lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}=f^{\prime}(a)
$$

2. Product rule: $(f \cdot g)^{\prime}=f^{\prime} g+f g^{\prime}$

Quotient rule: $\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} g-f g^{\prime}}{g^{2}}$
3. Chain rule
$F(x)=f(g(x))$
$F^{\prime}(x)=f^{\prime}(g(x)) \cdot g^{\prime}(x)$
4. Implicit differentiation
5. Differentiation of inverse function
f is differentiable, $g=f^{-1}$. Find $g^{\prime}(a)$

1. Find b such that $f(b)=a \rightarrow g(a)=b$
2. $g^{\prime}(a)=\frac{1}{f^{\prime}(b)}$
3. $g^{\prime}(a)=\frac{1}{f^{\prime}(g(a))}$
4. Logarithmic differentiation

Ex. $f(x)=\frac{1}{3}(x-1)^{\frac{1}{3}}(x+1)^{-\frac{2}{3}}(3 x+5) ; f^{\prime}(x)=$?
Sol. Set $y=f(x)$

$$
\begin{aligned}
& \ln |y|=\ln |f(x)| \\
& (\ln |y|)^{\prime}=\left(\frac{1}{3} \ln |x-1|-\frac{4}{3} \ln |x+1|+\ln |3 x+5|\right)^{\prime} \\
& \frac{y^{\prime}}{y}=\frac{1}{3} \cdot \frac{1}{x-1}-\frac{4}{3} \cdot \frac{1}{x+1}+\frac{3}{3 x+5} \\
& y^{\prime}=\frac{16}{9}(x-1)^{-\frac{2}{3}}(x+1)^{-\frac{7}{3}}
\end{aligned}
$$

7. Linear approximation of $f(x)$ at $x=a$
$L(x)=f(a)+f^{\prime}(a)+f^{\prime}(a)(x-a)$
$f(c) \approx f(a)+f^{\prime}(a)(c-a)$
8. Related change problem
9. Optimal problem (maximum value, minimum value)
10. c is a critical point of $f(x)$ if
11. $f(c)$ is defined
12. $f^{\prime}(c)=0$ or $f^{\prime}(c)$ does not exist

2. First derivative test

1.

2.

3.
3. $2^{\text {nd }}$ derivative test

1. $f^{\prime}(c)=0, f^{\prime \prime}(c)<0: f$ has a local max at c
2. $f^{\prime}(c)=0, f^{\prime \prime}(c)>0: f$ has a local min at c
3. Mean Value Theorem
f is continuous on $[a, b]$ and is differentiable on (a, b), the there is a $c \in(a, b)$ such that $f(b)-f(a)=f^{\prime}(c)(b-a)$
4. Increasing/decreasing
5. $f^{\prime}(x)>0$ on $I \rightarrow f$ is increasing on I
6. $f^{\prime}(x)<0$ on $I \rightarrow f$ is decreasing on I
7. If $f^{\prime}(x)<0$ or $f^{\prime}(x)>0$, then the function is one-to-one and has the inverse function
8. Concavity
9. $f^{\prime \prime}(x)>0$ on I, the graph of f is concave upward on I.
10. $f^{\prime \prime}(x)<0$ on I, the graph of f is concave downward on I.
11. Inflection point

