Department: \qquad Student ID: \qquad Name: \qquad

1. Find the derivative of the following functions.(You need not to simplify your answer.)
(a) $\frac{\mathrm{d}^{7}}{\mathrm{~d} x^{7}}\left(\frac{\sin ^{2} x}{1+\cot x}+\frac{\cos ^{2} x}{1+\tan x}\right)$
(b) $\frac{\mathrm{d}}{\mathrm{d} x}\left(\csc ^{-1}\left(\frac{\sqrt{1+x^{2}}}{x}\right)\right)$
(c) $\frac{\mathrm{d}}{\mathrm{d} x}\left(\log _{2^{x}}\left(\log _{x^{2}} \sec x\right)\right)$
(10 points)
(10 points)
(15 points)
Solution:
(a) Primarily, we can simplify the formula because direct differentiation is difficult.

$$
\begin{aligned}
\frac{\mathrm{d}^{7}}{\mathrm{~d} x^{7}}\left(\frac{\sin ^{2} x}{1+\cot x}+\frac{\cos ^{2} x}{1+\tan x}\right) & =\frac{\mathrm{d}^{7}}{\mathrm{~d} x^{7}}\left(\frac{\sin ^{3} x}{\sin x+\cos x}+\frac{\cos ^{3} x}{\sin x+\cos x}\right) \\
& =\frac{\mathrm{d}^{7}}{\mathrm{~d} x^{7}}\left(\frac{\sin ^{3} x+\cos ^{3} x}{\sin x+\cos x}\right) \\
& =\frac{\mathrm{d}^{7}}{\mathrm{~d} x^{7}}\left(\sin ^{2} x-\sin x \cos x+\cos ^{2} x\right) \\
& =\frac{\mathrm{d}^{7}}{\mathrm{~d} x^{7}}\left(1-\frac{1}{2} \sin 2 x\right) \\
& =64 \cos 2 x
\end{aligned}
$$

(b) Using the chain rule, we have

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\csc ^{-1}\left(\frac{\sqrt{1+x^{2}}}{x}\right)\right)=\frac{-1}{\frac{\sqrt{1+x^{2}}}{x} \cdot \sqrt{\left(\frac{\sqrt{1+x^{2}}}{x}\right)^{2}-1}} \cdot \frac{\frac{2 x}{2 \sqrt{1+x^{2}}} \cdot x-\sqrt{1+x^{2}} \cdot 1}{x^{2}}=\frac{1}{1+x^{2}}
$$

(c) Let $y=\log _{2^{x}}\left(\log _{x^{2}} \sec x\right)$, we want to find y^{\prime}.

$$
\begin{aligned}
\left(2^{x}\right)^{y} & =\log _{x^{2}} \sec x \\
\frac{\mathrm{~d}}{\mathrm{~d} x}\left(2^{x y}\right) & =\frac{\mathrm{d}}{\mathrm{~d} x}\left(\log _{x^{2}} \sec x\right) \\
2^{x y} \cdot \ln 2 \cdot\left(y+x y^{\prime}\right) & =\frac{\mathrm{d}}{\mathrm{~d} x}\left(\log _{x^{2}} \sec x\right) \\
y^{\prime} & =\frac{1}{x}\left(\frac{1}{\ln 2 \cdot \log _{x^{2}} \sec x} \cdot \frac{\mathrm{~d}}{\mathrm{~d} x}\left(\log _{x^{2}} \sec x\right)-\log _{2^{x}}\left(\log _{x^{2}} \sec x\right)\right)
\end{aligned}
$$

Let $u=\log _{x^{2}} \sec x$, we want to find u^{\prime}.

$$
\begin{aligned}
\left(x^{2}\right)^{u} & =\sec x \\
\frac{\mathrm{~d}}{\mathrm{~d} x}\left(x^{2 u}\right) & =\frac{\mathrm{d}}{\mathrm{~d} x}(\sec x) \\
\frac{\mathrm{d}}{\mathrm{~d} x}\left(e^{2 u \ln x}\right) & =\sec x \tan x \\
e^{2 u \ln x} \cdot\left(2 u^{\prime} \ln x+\frac{2 u}{x}\right) & =\sec x \tan x \\
u^{\prime} & =\frac{1}{\ln x}\left(\frac{1}{2} \tan x-\frac{\log _{x^{2}} \sec x}{x}\right)
\end{aligned}
$$

So, we can conclude

$$
y^{\prime}=\frac{1}{x}\left(\frac{1}{\ln 2 \cdot \log _{x^{2}} \sec x} \cdot \frac{1}{\ln x}\left(\frac{1}{2} \tan x-\frac{\log _{x^{2}} \sec x}{x}\right)-\log _{2^{x}}\left(\log _{x^{2}} \sec x\right)\right)
$$

2. Show that

$$
\frac{\mathrm{d}^{n}}{\mathrm{~d} x^{n}}\left(e^{a x} \sin b x\right)=r^{n} e^{a x} \sin (b x+n \theta)
$$

where a and b are positive numbers, $r^{2}=a^{2}+b^{2}$, and $\theta=\tan ^{-1}\left(\frac{b}{a}\right)$.
(Hint: You can use the principle of mathematical induction to prove it.)
(20 points)

Solution:

First, show that $n=1$ holds,

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}\left(e^{a x} \sin b x\right) & =a e^{a x} \sin b x+b e^{a x} \cos b x \\
& =\sqrt{a^{2}+b^{2}} e^{a x}\left(\sin b x \frac{a}{\sqrt{a^{2}+b^{2}}}+\cos b x \frac{b}{\sqrt{a^{2}+b^{2}}}\right)
\end{aligned}
$$

Let $r=\sqrt{a^{2}+b^{2}}, \cos \theta=\frac{a}{\sqrt{a^{2}+b^{2}}}, \sin \theta=\frac{b}{\sqrt{a^{2}+b^{2}}}$, and $\theta=\tan ^{-1}\left(\frac{b}{a}\right)$. So,

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left(e^{a x} \sin b x\right)=r e^{a x}(\sin b x \cos \theta+\cos b x \sin \theta)=r e^{a x} \sin (b x+\theta)
$$

Second, suppose that $n=k$ holds, that is,

$$
\frac{\mathrm{d}^{n}}{\mathrm{~d} x^{n}}\left(e^{a x} \sin b x\right)=r^{n} e^{a x} \sin (b x+n \theta)
$$

We want to show that $n=k+1$ holds,

$$
\begin{aligned}
\frac{\mathrm{d}^{n+1}}{\mathrm{~d} x^{n+1}}\left(e^{a x} \sin b x\right) & =\frac{\mathrm{d}}{\mathrm{~d} x}\left(r^{n} e^{a x} \sin (b x+n \theta)\right) \\
& =a r^{n} e^{a x} \sin (b x+n \theta)+b r^{n} e^{a x} \cos (b x+n \theta) \\
& =\sqrt{a^{2}+b^{2}} r^{n} e^{a x}\left(\sin (b x+n \theta) \frac{a}{\sqrt{a^{2}+b^{2}}}+\cos (b x+n \theta) \frac{b}{\sqrt{a^{2}+b^{2}}}\right) \\
& =r^{n+1} e^{a x} \sin (b x+(n+1) \theta)
\end{aligned}
$$

By the principle of mathematical induction, the formula holds for all $n \in \mathbb{N}$.
3. The curve $\left(x^{2}+y^{2}\right)^{2}=x^{2}-y^{2}$ is called a lemniscate. Find all points of the curve at which the tangent line is horizontal.
(15 points)

Solution:

By implicit differentiation, we have

$$
2\left(x^{2}+y^{2}\right)\left(2 x+2 y y^{\prime}\right)=2 x-2 y y^{\prime}
$$

In order to find horizontal tangent line, let $y^{\prime}=0$, and we have

$$
4 x\left(x^{2}+y^{2}\right)=2 x
$$

That is, $x=0$ or $x^{2}+y^{2}=\frac{1}{2}$. Slove x, y subject to $\left(x^{2}+y^{2}\right)^{2}=x^{2}-y^{2}$, we have

$$
(x, y)=(0,0),\left(\frac{\sqrt{6}}{4}, \frac{\sqrt{2}}{4}\right),\left(\frac{\sqrt{6}}{4},-\frac{\sqrt{2}}{4}\right),\left(-\frac{\sqrt{6}}{4}, \frac{\sqrt{2}}{4}\right),\left(-\frac{\sqrt{6}}{4},-\frac{\sqrt{2}}{4}\right)
$$

Ruling out the first improper case, we have

$$
(x, y)=\left(\frac{\sqrt{6}}{4}, \frac{\sqrt{2}}{4}\right),\left(\frac{\sqrt{6}}{4},-\frac{\sqrt{2}}{4}\right),\left(-\frac{\sqrt{6}}{4}, \frac{\sqrt{2}}{4}\right),\left(-\frac{\sqrt{6}}{4},-\frac{\sqrt{2}}{4}\right)
$$

4. Let $f^{\prime}(x)=\frac{1}{\sqrt[3]{1-f^{3}(x)}}$ and $f^{\prime \prime}(x)=\frac{1}{f(x)-1}$, Find $g^{\prime \prime}(x)$, where $g(x)$ is the inverse function of $f(x)$.

Solution:

By the definition of inverse function $g(f(x))=x$, we have

$$
\begin{aligned}
g^{\prime}(f(x)) f^{\prime}(x) & =1 \\
g^{\prime}(f(x)) & =\frac{1}{f^{\prime}(x)} \\
g^{\prime}(x) & =\frac{1}{f^{\prime}(g(x))}
\end{aligned}
$$

Similarly, the second derivative is

$$
\begin{aligned}
g^{\prime \prime}(f(x))\left(f^{\prime}(x)\right)^{2}+g^{\prime}(f(x)) f^{\prime \prime}(x) & =0 \\
g^{\prime \prime}(f(x)) & =-\frac{g^{\prime}(f(x)) f^{\prime \prime}(x)}{\left(f^{\prime}(x)\right)^{2}} \\
g^{\prime \prime}(f(x)) & =-\frac{f^{\prime \prime}(x)}{\left(f^{\prime}(x)\right)^{3}} \\
g^{\prime \prime}(x) & =-\frac{f^{\prime \prime}(g(x))}{\left[f^{\prime}(g(x))\right]^{3}}
\end{aligned}
$$

So,

$$
g^{\prime \prime}(x)=-\frac{\frac{1}{f(g(x))-1}}{\left(\frac{1}{\sqrt[3]{1-f^{3}(g(x))}}\right)^{3}}=-\frac{1-f^{3}(g(x))}{1-f(g(x))}
$$

Since $f(g(x))=x$, we have

$$
g^{\prime \prime}(x)=\frac{1-x^{3}}{1-x}=1+x+x^{2}
$$

5. If $P\left(a, a^{2}\right)$ is any first-quadrant point on the parabola $y=x^{2}$, let Q be the point where the normal line at P intersects the parabola again. For what values of a does the segment $P Q$ have the shortest length?
(15 points)

Solution:

The slope of the tangent line is the derivative of the parabola at $x=a$ which is $2 a$. Thus, the slope of the normal line is the opposite of reciprocal of $2 a$, which is $-\frac{1}{2 a}$. Now using the point-slope formula, we find the equation of the normal line

$$
y=-\frac{1}{2 a}(x-a)+a^{2}
$$

To find the coordinates of Q, we solve the system of the parabola and the normal line, and
use substitution method,

$$
\begin{aligned}
x^{2} & =-\frac{1}{2 a}(x-a)+a^{2} \\
x^{2}-a^{2} & =-\frac{1}{2 a}(x-a) \\
x+a & =-\frac{1}{2 a} \\
x & =-\frac{1}{2 a}-a \\
y & =-\frac{1}{2 a}\left(-\frac{1}{2 a}-2 a-a\right)+a^{2} \\
y & =a^{2}+1+\frac{1}{4 a^{2}}
\end{aligned}
$$

Hence the coordinates of $Q\left(-a-\frac{1}{2 a}, a^{2}+1+\frac{1}{4 a^{2}}\right)$.
Now we find the segment $P Q$, and let the segment be $D(a)$.
Then, using the distance formula, we have

$$
\begin{aligned}
D^{2}(a) & =\left(-a-\frac{1}{2 a}-a\right)^{2}+\left(a^{2}+1+\frac{1}{4 a^{2}}-a^{2}\right)^{2} \\
& =\left(-2 a-\frac{1}{2 a}\right)^{2}+\left(1+\frac{1}{4 a^{2}}\right)^{2} \\
& =4 a^{2}+3+\frac{3}{4 a^{2}}+\frac{1}{16 a^{4}}
\end{aligned}
$$

By Fermat's Theorem, if $D^{2}(a)$ has a local maximum or minimum at c, which is critical number, and if $\frac{\mathrm{d}}{\mathrm{d} a} D^{2}(c)$ exists, then $\frac{\mathrm{d}}{\mathrm{d} a} D^{2}(c)=0$, we have

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} a} D^{2}(a) & =0 \\
8 a-\frac{3}{2 a^{3}}-\frac{1}{4 a^{5}} & =0 \\
32 a^{6}-6 a^{2}-1 & =0 \\
\left(2 a^{2}-1\right)\left(4 a^{2}+1\right)^{2} & =0 \\
a & = \pm \frac{1}{\sqrt{2}}
\end{aligned}
$$

Since we know a is a positive real number, we get $a=\frac{1}{\sqrt{2}}$.

