Department: \qquad ID Number: \qquad Name: \qquad

1. (? points) Compute each of the following limits if it exists or explain why it doesn't exist.
(a) $\lim _{x \rightarrow+\infty} \frac{\sqrt{4 x^{4}+1}}{e^{x^{2}}}$
(b) $\lim _{x \rightarrow 0}\left(\sin ^{2} x\right) 2^{\cos \left(\frac{1}{x}\right)}$
(c) $\lim _{x \rightarrow \infty} \frac{(\sqrt{x}+x)^{2}}{1+x \sqrt{x}}$
(d) $\lim _{x \rightarrow \infty} \sin \left(\ln \left(\frac{1}{x}\right)\right)$

Solution:

(a) (Method 1)

Exponential functions grow asymptotically faster than algebraic functions.
Since $\sqrt{4 x^{4}+1}$ grows asymptotically slower than $e^{x^{2}}$ as x approaches ∞, $\lim _{x \rightarrow \infty} e^{-x^{2}} \sqrt{4 x^{4}+1}=0$.
(Method 2)
For every $x>1$,

$$
0 \leq \frac{\sqrt{4 x^{4}+1}}{e^{x^{2}}} \leq \frac{4 x^{2}}{e^{x^{2}}}
$$

and since $\lim _{x \rightarrow+\infty} \frac{4 x^{2}}{e^{x^{2}}} \stackrel{(\infty)}{(\infty)} \lim _{x \rightarrow+\infty} \frac{4}{e^{x^{2}}}=0$, we see that by Squeeze Theorem, $\lim _{x \rightarrow+\infty} \frac{\sqrt{4 x^{4}+1}}{e^{x^{2}}}=0$.
(b) We have the inequalities,

$$
-1 \leq \cos \left(\frac{1}{x}\right) \leq 1 \Longrightarrow \frac{1}{2}=2^{-1} \leq \cos \left(\frac{1}{x}\right) \leq 2^{1}=2, x \neq 0
$$

where we have used that for $a \geq b, 2^{a} \geq 2^{b}$ (this follows from the fact that the derivative of 2^{x} is always positive, so the function is increasing). Since $\sin ^{2}(x) \geq 0$, we get the inequalities

$$
\frac{1}{2} \sin ^{2}(x) \leq \sin ^{2}(x) \cos \left(\frac{1}{x}\right) \leq 2 \sin ^{2}(x), x \neq 0
$$

since $\lim _{x \rightarrow 0} \frac{1}{2} \sin ^{2}(x)=0$ and $2 \frac{1}{2} \sin ^{2}(x)=0$, by Squeeze Theorem, we find $\lim _{x \rightarrow 0}\left(\sin ^{2} x\right) 2^{\cos \left(\frac{1}{x}\right)}=0$.
(c) $($ Method 1$)$

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{(\sqrt{x}+x)^{2}}{1+x \sqrt{x}} & =\lim _{x \rightarrow \infty} \frac{x+2 x \sqrt{x}+x^{2}}{1+x \sqrt{x}} \\
& =\lim _{x \rightarrow \infty}\left(\frac{x+2 x \sqrt{x}+x^{2}}{1+x \sqrt{x}} \cdot \frac{x^{-2}}{x^{-2}}\right) \\
& =\lim _{x \rightarrow \infty} \frac{\frac{1}{x}+\frac{2}{x^{\frac{1}{2}}}+1}{\frac{1}{x^{2}}+\frac{1}{x^{\frac{1}{2}}}}
\end{aligned}
$$

Note that $\lim _{x \rightarrow \infty}\left(\frac{1}{x}+\frac{2}{x^{\frac{1}{2}}}+1=1\right)$, while $\frac{1}{x^{2}}+\frac{1}{x^{\frac{1}{2}}}=0$.
Hence, the limit is of the form $\frac{1}{0}$, which implies that the limit is either ∞ or $-\infty$. Since both the numerator and denominator a positive, then

$$
\lim _{x \rightarrow \infty} \frac{(\sqrt{x}+x)^{2}}{1+x \sqrt{x}}=+\infty
$$

(Method 2)

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{(\sqrt{x}+x)^{2}}{1+x \sqrt{x}} & =\lim _{x \rightarrow \infty} \frac{x+2 x \sqrt{x}+x^{2}}{1+x \sqrt{x}} \\
& =\lim _{x \rightarrow \infty}\left(\frac{x+2 x \sqrt{x}+x^{2}}{1+x \sqrt{x}} \cdot \frac{x^{\frac{-3}{2}}}{x^{\frac{-3}{2}}}\right) \\
& =\lim _{x \rightarrow \infty} \frac{\frac{1}{\sqrt{x}}+2+\sqrt{x}}{\frac{1}{x \sqrt{x}}+1}=\infty
\end{aligned}
$$

because the numerator goes to ∞ and the denominator goes to 1 .
(d) Since $\lim _{x \rightarrow \infty} \frac{1}{x}=0$, the above is equivalent to $\lim _{y \rightarrow 0^{+}} \sin (\ln (y))$. But $\lim _{y \rightarrow 0^{+}} \ln (y)=-\infty$, so the limit we're considering is equivalent to $\lim _{t \rightarrow-\infty} \sin t$. This limit does NOT exist, since the value of $\sin t$ oscillates infinitely often between -1 and 1 as t increases without bound, and does not approach a value.
2. (? points) Consider the function $h(x)=e^{\left(-e^{x}\right)}-2$.
(a) Find the domain and range of h.
(b) Find the equations of all vertical asymptotes of h, or explain completely why none exist. (As justification for each asymptote $x=a$, calculate both the one-sided limits $\lim _{x \rightarrow a^{-}} h(x)$ and $\lim _{x \rightarrow a^{+}} h(x)$ with reasoning.)
(c) Find the equations of all horizontal asymptotes of $h(x)$, or explain why none exist. Justify using limit computations.
(d) It is a fact that $h(x)$ is one-to-one (which you do not have to prove). Find an expression for $h^{-1}(x)$, the inverse of $h(x)$.

Solution:

(a) The domain of h is all of $\mathbb{R}=(-\infty, \infty)$, because h is a composition of exponential and linear functions, all of whose domains are \mathbb{R}.
To find the range of h :
(Method 1)
Range of e^{x} is $(0, \infty)$, range of $-e^{x}$ is $(-\infty, 0)$, range of $e^{-e^{x}}$ is $(0,1)$, range of $e^{-e^{x}}-2$ is $(-2,-1)$.
(Method 2)
From part d, $h^{-1}(x)=\ln (-\ln (x+2))$, and the range of h is the domain of h^{-1}. For $h^{-1}(x)$ to be defined, the arguments of both natural logarithms must be positive, i.e. $x+2>0 \Rightarrow$ $x>-2$ and $-\ln (x+2)>0 \Rightarrow \ln (x+2)<0 \Rightarrow x+2<1 \Rightarrow x<-1$. So the range is $\{x \in \mathbb{R} \mid-2<x<-1\}$.
(Method 3)
Many said that the range is $(-2,-1)$ because the horizontal asymptotes (found in part c) are $y=-2$ and $y=-1$. This receives no credit since this approach usually finds the wrong answer: for example, $f(x)=\frac{e^{x}+x}{e^{x}-x}$ has horizontal asymptotes $y=1$ and $y=-1$, but for all positive $x, f(x)>1$, so its range is not just $(-1,1)$. If you really want to mend this argument with horizontal asymptotes, you can say: $h^{\prime}(x)=\frac{d}{d x}\left(-e^{x}\right) e^{\left(-e^{x}\right)}=-e^{x} e^{\left(-e^{x}\right)}<0$ for all x, so $h(x)$ is a decreasing function that is continuous on all of \mathbb{R}, so its range is the interval between $\lim _{x \rightarrow \infty} h(x)$ and $\lim _{x \rightarrow-\infty} h(x)$, i.e. the interval $(-2,-1)$.
(b) (Method 1)
h has no vertical asymptotes because it is continuous on all of \mathbb{R}.
(Method 2)
The range of h is $(-2,-1)$, so $|h(x)|$ cannot be arbitrarily large. Hence $\lim _{x \rightarrow a^{-}} h(x)$ and $\lim _{x \rightarrow a^{+}} h(x)$ cannot be ∞ or $-\infty$.
(c) Our computations below are aided by making the substitution $t=-e^{x}$; notice that $\lim _{x \rightarrow \infty} t=-\infty$ and $\lim _{x \rightarrow-\infty} t=0$.

$$
\begin{aligned}
\lim _{x \rightarrow \infty} h(x) & =\lim _{t \rightarrow-\infty} e^{t}-2 \\
& =0-2 \\
& =-2 \\
\lim _{x \rightarrow-\infty} h(x) & =\lim _{t \rightarrow 0} e^{t}-2 \\
& =e^{0}-2 \\
& =1-2 \\
& =-1
\end{aligned}
$$

So horizontal asymptotes are $y=-2$ and $y=-1$.
(d)

$$
\begin{aligned}
y & =e^{\left(-e^{x}\right)}-2 \\
y+2 & =e^{\left(-e^{x}\right)} \\
\ln (y+2) & =-e^{x} \\
-\ln (y+2) & =e^{x} \\
\ln (-\ln (y+2)) & =x
\end{aligned}
$$

So $h^{-1}(x)=\ln (-\ln (x+2))$.
3. (? points) Let

$$
f(x)= \begin{cases}a x+b, & x<1 \\ x^{4}+x+1, & x \geq 1\end{cases}
$$

Find all a and b such that function $f(x)$ is differentiable.

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow 1^{-}} f(x) & =\lim _{x \rightarrow 1^{-}}(a x+b) \\
& =a+b \\
\lim _{x \rightarrow 1^{+}} f(x) & =\lim _{x \rightarrow 1^{+}}\left(x^{4}+x+1\right) \\
= & 3
\end{aligned}
$$

So $f(x)$ is continuous at $x=1$ if and only if $a+b=3$.

$$
\begin{gathered}
\lim _{x \rightarrow 1^{-}} f^{\prime}(x)=\lim _{x \rightarrow 1^{-}} a \\
=a \\
\lim _{x \rightarrow 1^{+}} f^{\prime}(x)=\lim _{x \rightarrow 1^{+}}\left(4 x^{3}+1\right) \\
=5
\end{gathered}
$$

So $f^{\prime}(x)$ is differentiable at $x=1$ if and only if $a=5$. So $b=-2$.
4. (? points) Derive the formula $\frac{\mathrm{d}}{\mathrm{d} x} a^{x}=M(a) a^{x}$ directly from the definition of the derivative, and identify $M(a)$ as a limit.

Solution:

$$
\begin{aligned}
\frac{d}{d x}\left(a^{x}\right) & =\lim _{h \rightarrow 0} \frac{a^{x+h}-a^{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{a^{x} \cdot a^{h}-a^{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{a^{x}\left(a^{h}-1\right)}{h} \\
& =a^{x} \underbrace{\lim _{h \rightarrow 0} \frac{a^{h}-1}{h}}_{M(a)} \\
& =M(a) a^{x}
\end{aligned}
$$

