2020/10/7

Department: _

_____ Name: ____

1. (? points) Compute each of the following limits if it exists or explain why it doesn't exist. (a) $\lim_{x\to+\infty} \frac{\sqrt{4x^4+1}}{e^{x^2}}$ (b) $\lim_{x\to0} (\sin^2 x) 2^{\cos(\frac{1}{x})}$ (c) $\lim_{x\to\infty} \frac{(\sqrt{x}+x)^2}{1+x\sqrt{x}}$ (d) $\lim_{x\to\infty} \sin(\ln(\frac{1}{x}))$

Solution:

(a) (Method 1) Exponential functions grow asymptotically faster than algebraic functions. Since $\sqrt{4x^4 + 1}$ grows asymptotically slower than e^{x^2} as x approaches ∞ , $\lim_{x\to\infty} e^{-x^2}\sqrt{4x^4 + 1} = 0.$ (Method 2) For every x > 1, $0 \le \frac{\sqrt{4x^4 + 1}}{e^{x^2}} \le \frac{4x^2}{e^{x^2}}$

and since $\lim_{x\to+\infty} \frac{4x^2}{e^{x^2}} \stackrel{(\stackrel{\infty}{\cong})}{=} \lim_{x\to+\infty} \frac{4}{e^{x^2}} = 0$, we see that by Squeeze Theorem, $\lim_{x\to+\infty} \frac{\sqrt{4x^4+1}}{e^{x^2}} = 0$.

(b) We have the inequalities,

$$-1 \le \cos\left(\frac{1}{x}\right) \le 1 \Longrightarrow \frac{1}{2} = 2^{-1} \le \cos\left(\frac{1}{x}\right) \le 2^1 = 2, \ x \ne 0$$

where we have used that for $a \ge b$, $2^a \ge 2^b$ (this follows from the fact that the derivative of 2^x is always positive, so the function is increasing). Since $\sin^2(x) \ge 0$, we get the inequalities

$$\frac{1}{2}\sin^2(x) \le \sin^2(x)\cos\left(\frac{1}{x}\right) \le 2\sin^2(x), \ x \ne 0$$

since $\lim_{x\to 0} \frac{1}{2} \sin^2(x) = 0$ and $2\frac{1}{2} \sin^2(x) = 0$, by Squeeze Theorem, we find $\lim_{x\to 0} (\sin^2 x) 2^{\cos(\frac{1}{x})} = 0$.

(c) (Method 1)

$$\lim_{x \to \infty} \frac{(\sqrt{x} + x)^2}{1 + x\sqrt{x}} = \lim_{x \to \infty} \frac{x + 2x\sqrt{x} + x^2}{1 + x\sqrt{x}}$$
$$= \lim_{x \to \infty} \left(\frac{x + 2x\sqrt{x} + x^2}{1 + x\sqrt{x}} \cdot \frac{x^{-2}}{x^{-2}}\right)$$
$$= \lim_{x \to \infty} \frac{\frac{1}{x} + \frac{2}{x^{\frac{1}{2}}} + 1}{\frac{1}{x^2} + \frac{1}{x^{\frac{1}{2}}}}$$

Note that $\lim_{x\to\infty} \left(\frac{1}{x} + \frac{2}{x^{\frac{1}{2}}} + 1 = 1\right)$, while $\frac{1}{x^2} + \frac{1}{x^{\frac{1}{2}}} = 0$. Hence, the limit is of the form $\frac{1}{0}$, which implies that the limit is either ∞ or $-\infty$. Since both the numerator and denominator a positive, then

$$\lim_{x \to \infty} \frac{(\sqrt{x} + x)^2}{1 + x\sqrt{x}} = +\infty$$

(Method 2)

$$\lim_{x \to \infty} \frac{(\sqrt{x} + x)^2}{1 + x\sqrt{x}} = \lim_{x \to \infty} \frac{x + 2x\sqrt{x} + x^2}{1 + x\sqrt{x}}$$
$$= \lim_{x \to \infty} \left(\frac{x + 2x\sqrt{x} + x^2}{1 + x\sqrt{x}} \cdot \frac{x^{\frac{-3}{2}}}{x^{\frac{-3}{2}}} \right)$$
$$= \lim_{x \to \infty} \frac{\frac{1}{\sqrt{x}} + 2 + \sqrt{x}}{\frac{1}{x\sqrt{x}} + 1} = \infty$$

because the numerator goes to ∞ and the denominator goes to 1.

(d) Since $\lim_{x\to\infty} \frac{1}{x} = 0$, the above is equivalent to $\lim_{y\to 0^+} \sin(\ln(y))$. But $\lim_{y\to 0^+} \ln(y) = -\infty$, so the limit we're considering is equivalent to $\lim_{t\to -\infty} \sin t$. This limit **does NOT exist**, since the value of $\sin t$ oscillates infinitely often between -1 and 1 as t increases without bound, and does not approach a value.

- 2. (? points) Consider the function $h(x) = e^{(-e^x)} 2$.
 - (a) Find the domain and range of h.
 - (b) Find the equations of all vertical asymptotes of h, or explain completely why none exist. (As justification for each asymptote x = a, calculate both the one-sided limits $\lim_{x\to a^-} h(x)$ and $\lim_{x\to a^+} h(x)$ with reasoning.)
 - (c) Find the equations of all horizontal asymptotes of h(x), or explain why none exist. Justify using limit computations.
 - (d) It is a fact that h(x) is one-to-one (which you do not have to prove). Find an expression for $h^{-1}(x)$, the inverse of h(x).

Solution:

(a) The domain of h is all of R = (-∞,∞), because h is a composition of exponential and linear functions, all of whose domains are R.

To find the range of h:

(Method 1)

Range of e^x is $(0, \infty)$, range of $-e^x$ is $(-\infty, 0)$, range of e^{-e^x} is (0, 1), range of $e^{-e^x} - 2$ is (-2, -1).

(Method 2)

From part d, $h^{-1}(x) = \ln(-\ln(x+2))$, and the range of h is the domain of h^{-1} . For $h^{-1}(x)$ to be defined, the arguments of both natural logarithms must be positive, i.e. $x + 2 > 0 \Rightarrow x > -2$ and $-\ln(x+2) > 0 \Rightarrow \ln(x+2) < 0 \Rightarrow x + 2 < 1 \Rightarrow x < -1$. So the range is $\{x \in \mathbb{R} | -2 < x < -1\}$.

(Method 3)

Many said that the range is (-2, -1) because the horizontal asymptotes (found in part c) are y = -2 and y = -1. This receives no credit since this approach usually finds the wrong answer: for example, $f(x) = \frac{e^x + x}{e^x - x}$ has horizontal asymptotes y = 1 and y = -1, but for all positive x, f(x) > 1, so its range is not just (-1, 1). If you really want to mend this argument with horizontal asymptotes, you can say: $h'(x) = \frac{d}{dx}(-e^x)e^{(-e^x)} = -e^xe^{(-e^x)} < 0$ for all x, so h(x) is a decreasing function that is continuous on all of \mathbb{R} , so its range is the interval between $\lim_{x\to\infty} h(x)$ and $\lim_{x\to-\infty} h(x)$, i.e. the interval (-2, -1).

(b) (Method 1)

h has no vertical asymptotes because it is continuous on all of \mathbb{R} .

(Method 2)

The range of h is (-2, -1), so |h(x)| cannot be arbitrarily large. Hence $\lim_{x\to a^-} h(x)$ and $\lim_{x\to a^+} h(x)$ cannot be ∞ or $-\infty$.

(c) Our computations below are aided by making the substitution $t = -e^x$; notice that $\lim_{x\to\infty} t = -\infty$ and $\lim_{x\to-\infty} t = 0$.

$$\lim_{x \to \infty} h(x) = \lim_{t \to -\infty} e^t - 2$$
$$= 0 - 2$$
$$= -2$$
$$\lim_{x \to -\infty} h(x) = \lim_{t \to 0} e^t - 2$$
$$= e^0 - 2$$
$$= 1 - 2$$
$$= -1$$
horizontal asymptotes are $u = -2$ and $u = -1$.

So horizontal asymptotes are \boldsymbol{y} $\cdot 2$ and yΤ.

(d)

$$y = e^{(-e^x)} - 2$$
$$y + 2 = e^{(-e^x)}$$
$$\ln (y + 2) = -e^x$$
$$-\ln (y + 2) = e^x$$
$$\ln (-\ln (y + 2)) = x$$

So $h^{-1}(x) = \ln(-\ln(x+2))$.

3. (? points) Let

$$f(x) = \begin{cases} ax + b, & x < 1\\ x^4 + x + 1, & x \ge 1 \end{cases}$$

Find all a and b such that function f(x) is differentiable.

Solution:

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (ax + b)$$
$$= a + b$$
$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} (x^{4} + x + 1)$$
$$= 3$$

So f(x) is continuous at x = 1 if and only if a + b = 3.

$$\lim_{x \to 1^{-}} f'(x) = \lim_{x \to 1^{-}} a$$
$$= a$$

$$\lim_{x \to 1^+} f'(x) = \lim_{x \to 1^+} (4x^3 + 1)$$

= 5

So f'(x) is differentiable at x = 1 if and only if a = 5. So b = -2.

4. (? points) Derive the formula $\frac{\mathrm{d}}{\mathrm{d}x}a^x = M(a)a^x$ directly from the definition of the derivative, and identify M(a) as a limit.

Solution:

$$\frac{d}{dx}(a^x) = \lim_{h \to 0} \frac{a^{x+h} - a^x}{h}$$
$$= \lim_{h \to 0} \frac{a^x \cdot a^h - a^x}{h}$$
$$= \lim_{h \to 0} \frac{a^x(a^h - 1)}{h}$$
$$= a^x \lim_{h \to 0} \frac{a^h - 1}{h}$$
$$= M(a)a^x$$

End of Quiz 1