
Differentiation 1

Differentiation
POLYNOMIAL & EXPONENT
 ,  is a constant

 ,  is any real number

Proof. For the case  is a positive integer:

TANGENT

c =dx
d 0 c

x =
dx
d n n ⋅ xn−1 n

n

(a+ b) =n a +n C a b+1
n n−1 ⋯+ C bn

n n

x =
dx

d n

h→0
lim

h

(x+ h) − xn n

 =
h→0
lim

h

+ nx h+⋯+ h −xn n−1 n xn

  = nx +
h→0
lim n−1 x +

2
n(n− 1) n−2 hn−1

= nxn−1



Differentiation 2

The equation of the tangent line: 

The equation of the normal line: 

Tangent line L 

: slope of normal line

See Example 1

 

 

//NOTE// Where  and  are differentiable function

See Example 2

 

Proof. .

Recall the  number is the number such that .

y− f(a) = f (a)(x−′ a)

y− f(a) = (x−f (a)′
−1 a)

m ⋅L m =P −1⇒m =P =mL

1
f (a)′
−1

mP

c ⋅
dx
d f(x) = c ⋅ f(x)

dx
d

[f(x) ±
dx
d g(x)] = f(x) ±

dx
d g(x)

dx
d

f g

e =dx
d x ex

e =
dx

d x =
h→0
lim

h

e − ex+h x

e =x

1

h→0
lim

h

e − 1h

ex

e =
h→0
lim

h

e − 1h

1



Differentiation 3

See Example 3

PRODUCT & QUOTIENT

💡 ; 

 Product rule

: differentiable function

 is a differentiable function and 

Proof.

//NOTE// Since  and  are differentiable

See Example 4 & 5

(f ⋅ g) =′  f ⋅′ g′ =(
g

f )
′

 g ′
f ′

f ⋅ g

⇒ f ⋅ g (f ⋅ g) =′ f g +′ fg′

(f ⋅ g) =′
h→0
lim

h

f(x+ h)g(x+ h) − f(x)g(x)

=

h→0
lim

h

f(x+ h)g(x+ h) − f(x)g(x+ h) + f(x)g(x+ h) − f(x)g(x)

= +

exists

⋅ g(x+ h)
h→0
lim

h

f(x+ h) − f(x)

exists

⋅ f(x)
h→0
lim

h

g(x+ h) − g(x)

= f (x)g(x) +′ f(x)g (x)′

f g



Differentiation 4

 Quotient rule

See Example 6 & 7

TRIGONOMETRIC

See Example 8

See Example 9

CHAIN RULE

Idea. Set 

Known. 

=(
g

f
)
′

g2
f g − fg′ ′

sin x =
dx

d
cosx

 

cosx =
dx

d
−sin x

 

tan x =
dx

d
sec x2

cotx =
dx

d
−csc x2

 

secx =
dx

d
secx tan x

 

cscx =
dx

d
−cscx cotx

sin x =
dxn

dn

⎩⎪⎪
⎪⎪
⎨
⎪⎪
⎪⎪⎧cosx,
− sin x,
− cosx,
sin x,

n = 4k + 1
n = 4k + 2
n = 4k + 3
n = 4k

cosx =
dxn

dn

⎩⎪⎪
⎪⎪
⎨
⎪⎪
⎪⎪⎧−sin x,
− cosx,
sin x,
cosx,

n = 4k + 1
n = 4k + 2
n = 4k + 3
n = 4k

(x−
dx

d
1) =2 (x −

dx

d 2 2x+ 1) = 2x− 2

(x−
dx

d
1) =2019 ?

u = x− 1 → =
dx
du 1

u =
du

d 2019 2019u2018

u =
du

d 2019 ⋅
du

du2019
=

dx

du
2019u ⋅2018 1



Differentiation 5

If  is differentiable at  and  is differentiable at , then the composite 
function  defined by  is differentiable at  and 

. If we set . 

Given a , we want to find  and  such that:

 

 

//NOTE// Easier to compute

See Example 10 & 11

POWER RULE

See Example 12

Proof. 

See Example 13

INVERSE
 is an inverse function of a differentiable function . Then  is also 

differentiable function.

Proof. 

⇒ (x−
dx

d
1) =2019 2019(x− 1)2018

g x f g(x)
F = f ⋅ g F(x) = f(g(x)) x

F (x) =′ f (g(x))g (x)′ ′ y = f(u), u = g(x),  =
dx

df(u)
⋅

du

dy

dx

du

F(x) y = f(u) u = g(x)

F(x) = f(g(x))

F(x) =
dx

d
⋅

du

dy

dx

du

[g(x)] =
dx

d n n ⋅ [g(x)] ⋅n−1 g (x)′

b =
dx

d x ln b ⋅ b , b >x 0 is a constant

b =x (e ) =ln b x eln b⋅x

  b =
dx

d x e =
dx

d ln b⋅x e ⋅ln b⋅x (ln b ⋅
dx

d
x) = b ⋅x ln b

f (x)−1 f f−1

f (x) =
dx

d −1

f (f (x))′ −1

1

f(f (x)) =−1 x⇒ f(f (x)) =
dx

d −1 x =
dx

d
1



Differentiation 6

By chain rule, 

.

See Example 14

IMPLICIT
Circle: 

//NOTE//  is depend on 

How to compute ?

Method of implicit differentiation

Steps:
 Differentiating both sides of the equation

 Solving the equation obtain in step 1 for 

See Example 1517

INVERSE

  f(f (x)) ⋅−1 f (x) =
dx

d −1 1

 ∴ f (x) =
dx

d −1

f (f (x))′ −1

1

(f ) (b) =−1 ′  where f(a) =
f (a)′

1
b

x +2 y =2 25 ⇒ y =  or  −25 − x2 25 − x2

y x

dx

dy

dx

dy

 
 

π



Differentiation 7

Proof. Set , then . By implicit differentiation,

Since , we have  and 

.

Therefore, .

See Example 18

LOGARITHMIC

sin x+−1 cos x =−1

2
π

 
tan x+−1 cot x =−1

2
π

 
csc x+−1 sec x =−1

2
π

 

sin x =
dx

d −1

1 − x2

1

y = sin x−1 sin y = x

sin y =
dx

d
x⇒

dx

d
cosy ⋅ =

dx

dy
1 ⇒ =

dx

dy

cosy
1

  y = sin x−1 − ≤
2
π

y ≤
2
π

cosy = =1 − sin y2

1 − x2

  sin x =
dx

d −1

1 − x2

1

cos x =
dx

d −1 − sin x =
dx

d
(
2
π −1 ) −

1 − x2

1

tan x =
dx

d −1

1 + x2
1

cot x =
dx

d −1 −
1 + x2
1

sec x =
dx

d −1

x x − 12

1
csc x =

dx

d −1 −
x x − 12

1

ln x =
dx

d

x

1



Differentiation 8

Proof. Set . We have  and .

Proof. 

Proof. 

//NOTE// By Chain Rule

See Example 19

Given 

 

Simplify 

 

//NOTE// By Chain Rule

Proof. For 

y = ln x e =y x e =
dx

d y x =
dx

d
1

 ⇒ e ⋅y =
dx

dy
1 ⇒ =

dx

dy
=

ey
1

x

1

(f ) (x) =−1 ′

f (f (x))′ −1

1

  f(x) = e ; f (x) =x −1 ln x; f (x) =′ ex

  (ln x) =′ =
f (ln x)′

1
=

eln x

1
x

1

log x =
dx

d
a , a >

x ln a
1

0, a = 1

log x =a ln a
ln x

  log x =
dx

d
a ⋅

ln a
1

=
dx

d
ln x

x
1

x ln a
1

ln g(x) =
dx

d
⇒

g(x)
g (x)′

g (x) =′ g(x) ⋅ ln g(x)
dx

d

y = f(x);  =
dx

dy
?

ln y = ln f(x)

ln f(x)

y =′ y ⋅ ln f(x)
dx

d

ln g(x) =
dx

d

g(x)
g (x)′

⇒g (x) =′ g(x) ⋅ ln g(x)
dx

d

ln ∣x∣ =
dx

d
, x =

x

1
 0

x > 0,  ln ∣x∣ =
dx

d
ln x =

dx

d

x

1

 



Differentiation 9

For 

See Example 20

// use logarithmic differentiation

See Example 21

Proof. 

Set 

RELATED RATES
Given 

 = the rate of change of  with respect to 

 = the rate of change of  with respect to 

How to know the rate of change of  with respect to ?

  x < 0,  ln ∣x∣ =
dx

d
ln (−x) =

dx

d
=

−x

(−x)′
=

−x

−1
x

1

[f(x)]
dx

d g(x)

e = (1 +
h→0
lim h) =h

1
1 +

h→∞
lim (

h

1
)

h

f(x) = ln x; f (x) =′ ; f (1) =
x

1 ′ 1

  1 = f (1) =′ =
h→0
lim

h

ln (1 + h) − ln 1
(1 +

h→0
lim h) h

1

  e = e =1 e =lim ln (1+h)h→0 h
1

=
ln x is continuous

eln (lim (1+h) )h→0 h
1

(1 +
h→0
lim h) h

1

  h = ; n→
n

1
∞⇒ h→ 0+

  1 + =
n→∞
lim (

n

1
)

n

1 + h =
h→0+
lim ( ) h

1

e

e =x 1 +
n→∞
lim (

n

x
)
n

y = f(u); u = g(t)

du

dy
y u

dt

du
u t

y t
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By chain rule, .

See Example 22 & 23

LINEAR APPROXIMATION
By definition of the derivative, we have .

By definition of limit, we have  when .

Then the approximation  is called the linear 
approximation of  at .

Def.  is called the linearization of  at .

See Example 24

DIFFERENTIALS
;  : differentiable function

The differential  is defined by 

 : change in . The corresponding change in  is  
\\ Change of  from  to 

\\ 

See Example 25

CONCLUSION
 When  becomes smaller, the approximation  becomes better.

 For more complicated function, to estimate the change, the differential is 
useful.

=
dt

dy
⋅

du

dy

dt

du

f (a) =′
x→a
lim

x− a

f(x) − f(a)

≈
x− a

f(x) − f(a)
f (a)′ x ≈ a

f(x) ≈ f(a) + f (a)(x−′ a)
f x = a

L(x) = f(a) + f (a)(x−′ a) f a

y = f(x) f

dy dy = f (x)dx⇒′ =
dx

dy
f (x)′

Δx x y Δy = f(x+Δx) − f(x)
f x x+Δx

dx = Δx

Δx Δy ≈ dy



Differentiation 11

MARGINAL COST
 : cost function

EXAMPLES
 Find the tangent line and normal line to the curve  at 

Sol. ; 

The equation of the tangent line is

The equation of the normal line is

 Find the points on the curve  where the tangent line is 
horizontal

Sol. 

The tangent line is horizontal means . To solve , we have 
. So, the points are 

.

 At what point on the curve  is the tangent line parallel to the line 
?

Sol. Since the tangent line is parallel to the line , we have . 
So, we need to solve . Then we have . Therefore, the 
point is .

 (a) ; 

C(x)

C(x+ 1) − C(x) ≈ C (x)′

y = x x (1, 1)

y = x 2
3

=
dx

dy x2
3

2
1

y− 1 = (1) (x−
2
3

2
1

1) → y− 1 = x−
2
3

2
3

y = x−
2
3

2
1

y− 1 = (x−
(1)2
3

2
1

−1
1) → y− 1 = − x+

3
2

3
2

y = − x+
3
2

3
5

y = x −4 6x +2 4

y =′ 4x −3 12x

y =′ 0 y =′ 0
4x −3 12x = 0 ⇒ x = 0,  ± 3
(0, 4), ( ,−5), (− ,−5)3 3

y = ex

y = 2x

y = 2x y =′ 2
2 = y =′ ex x = ln 2

(ln 2, e ) →ln 2 (ln 2, 2)

f(x) = xex f (x) =′ ?

 u = x→ u =′ 1



Differentiation 12

(b) 

Therefore, . To prove , we use the 
induction.

For ,

Assume ,

For ,

By induction, we have .

 ; ; ; 

Sol. 

 ; 

Sol. 

 ; 

Sol. 

 v = e →x v =′ ex

 f (x) =′ e +x xe =x e (1 +x x)

f (x) =′′ ?

 u = e →x u =′ ex

 v = 1 + x→ v =′ 1
 f (x) =′′ e (1 +x x) + e =x e (2 +x x)

f (x) =n (x+ n)ex f (x) =n (x+ n)ex

n = 1

f (x) =′ (x+ 1)e .x

n = k

f (x) =k (x+ k)e .x

n = k + 1

f (x) =k+1 [(x+ k)e ] =x ′ e +x (x+ k)e +x (x+ (k + 1))e .x

f (x) =n (n+ x)ex

f(x) = g(x)x g(4) = 2 g (4) =′ 3 f (4) =′ ?

f (x) =′ ( ) g(x) +x ′ g (x)x ′

   f (4) =′ (4) ⋅2
1 − 2

1
2 + ⋅4 3 = 6 2

1

y =
x+ 6

x + x− 22

y =′ ?

u = x +2 x− 2 → u =′ 2x+ 1
   v = x+ 6 → v =′ 1

  =(
g

f
)
′

(x+ 6)2
(2x+ 1)(x+ 6) − (x + x− 1)2

F(x) =
x

3x + 22 x
F (x) =′ ?

F(x) = =
x

3x + 22 x
3x+ 2x− 2

1

F (x) =′ 3 + 2 − x =(
2
1

) − 2
3

3 − x− 2
3

secx
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 ,  What value of  does the graph of  has a 

horizontal tangent?

Sol. 

The graph of  has a horizontal tangent at  means .

,  is any integer.

 

 ; 

Sol. Set 

If we set  ✘

 

Sol. Set 

By chain rule, 

 

Sol. 

 ; 

Sol. 

f(x) =
1 + tan x
secx

f(x) =? x f(x)

f(x) = =
1 + cos x

sin x
cos x
1

=
cos x

(cos x+sin x)
cos x
1

sin x+ cosx
1

  f (x) =′ =
(sin x+ cosx)2
0 − (cosx− sin x)

(sin x+ cosx)2
sin x− cosx

  f x f (x) =′ 0

  f (x) =′ 0 → −cosx+ sin x = 0 → sin x = cosx→ tan x = 1 →
x = +

4
π

nπ n

x =
dx2
d2

−x⇒ x = sin x

f(x) = x + 12 f (x) =′ ?

u = x +2 1;  =
dx

du
2x; y = ;  =u

du

dy

2 u

1

f (x) =′ ⋅
du

dy
=

dx

du
⋅

2 u

1
2x =

x + 12

x

u = x ; y =2 ;  =u+ 1
du

dy ?

sin x =
dx

d 2 ?

u = sin x; y = u ;  =2

dx

du
cosx;  =

du

dy
2u

sin x =
dx

d 2 ⋅
du

dy
=

dx

du
2u ⋅ cosx = 2 sin x cosx =

sin 2x

f(x) = ; f (x) =
3 x + x+ 12

1 ′ ?

f (x) =′ − (x +
3
1 2 x+ 1) ⋅− 3

4
(x +

dx

d 2 x+ 1) = − (x +
3
1 2 x+

1) (2x+− 3
4

1)

f(x) = sin (cos (tan x)) f (x) =′ ?

f (x) =′ cos (cos (tan x)) ⋅ cos (tan x)
dx

d

= cos (cos (tan x)) ⋅ (− sin (tan x)) ⋅ tan x
dx

d
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Sol. ; since , 

 (a) 

Sol. 

By chain rule, 

(b) The equation of the tangent to the circle  at 

Sol. The slope of the equation tangent is

The equation of the tangent is .

  if 

Sol. 

  if 

= −cos (cos (tan x)) ⋅ sin (tan x) ⋅ sec x2

f(4) = 5; f (4) =′ ; (f ) (5) =
3
2 −1 ′ ?

(f ) (5) =−1 ′

f (f (5))′ −1

1
f(4) = 5 f (5) =−1 4

(f ) (5) =−1 ′ =
f (4)′

1
2
3

x +2 y =2 25;  =
dx

dy
?

  (x +
dx

d 2 y ) =2 25 ⇒
dx

d
x +

dx

d 2 =
dx

d

y=f (x)

y2 0

2x+ 2y =
dx

dy
0 ⇒ =

dx

dy
−

y

x

x +2 y =2 25 (3, 4)

 

=
dx

dy

∣
∣
∣
∣∣
∣

(x,y)=(3,4)

−
4
3

(y− 4) = − (x−
4
3

3)

y′ sin (x+ y) = y cosx2

(sin (x+ y)) =
dx

d
(y cosx)

dx

d 2

cos (x+ y) ⋅ (x+
dx

d
y) = y cosx+(

dx

d 2) y cosx2 (
dx

d
)

cos (x+ y) 1 + =(
dx

dy
) 2y cosx+

dx

dy
(− sin x)y2

cos (x+ y) + cos (x+ y) =
dx

dy
2y cosx −

dx

dy
y sinx2

(cos (x+ y) − 2y cosx) =
dx

dy
−y sin x−2 cos (x+ y)

=
dx

dy

2y cosx− cos (x+ y)
y sin x+ cos (x+ y)2

y′′ x +4 y =4 16

3
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Sol. 

 

Sol. 

 

Sol. 

Sol. 

 

Sol. 

(x +
dx

d 4 y ) =4 16 ⇒
dx

d
4x +3 4y =3

dx

dy
0 ⇒ =

dx

dy
−

y3
x3

y =′′ (y ) =′ ′ − =(
y3
x3

)
′

y6
−3x y + x ⋅ 3y2 3 3 2

dx

dy

    = =
y6

−3x y + x ⋅ 3y −2 3 3 2 (
y3
x3 )

y6
−3x y − 3x y2 3 6 −1

    = =
y7

−3x ( )2 y + x4 4

16

−48x y2 −7

f(x) = x tan ; f (x) =−1 x ′ ?

f (x) =′ x tan +′ −1 x x(tan )−1 x ′

 = tan +−1 x x ⋅ x ⋅
2
1 − 2

1

1 + x

1

 = tan +−1 x
2(1 + x)

x

ln
dx

d
(

x− 2
x+ 1

)

ln =
dx

d

g(x)

(
x− 2
x+ 1

) =
x−2
x+1

1
(

x− 2
x+ 1

)
′

⋅
x+ 1
x− 2

( )x− 2 2

− (x+ 1) ⋅x− 2
2 x−2
1

= =
(x+ 1)(x− 2)
(x− 2) − 2

x+1

2(x+ 1)(x− 2)
x− 5

ln =
x− 2
x+ 1

ln (x+ 1) − ln (x− 2)
2
1

ln =
dx

d

x− 2
x+ 1

ln (x+ 1) −
dx

d
⋅

2
1

ln (x− 2)
dx

d

= −
x+ 1
1

=
2(x− 2)
1

2(x+ 1)(x− 2)
x− 5

y = ; y =
(3x+ 2)5
x 3
4

x + 12
′ ?

ln y = ln =
(3x+ 2)5
x 3
4

x + 12
ln x+

3
4

ln (x + 1) −
2
1 2 5 ln (3x+ 2)
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Sol. 

 There is a balloon is a balloon.

Volume 

radius  when diameter = 

Sol. Set  is the volume,  is the radius. Then . By 

assumption,  and . We want to know . 

Differentiating  on both sides with the respect to , we have

ln y =
dx

d
⋅

3
4

+
x

1
⋅

2
1

−
x + 12

2x
5 ⋅
3x+ 2
3

=
dx

dy
y + − =(
3x
4

x + 12

x

3x+ 2
15

)

+ −
(3x+ 2)5
x 3
4

x + 12
(
3x
4

x + 12

x

3x+ 2
15

)

y = x ; y =x ′ ?

ln y = ln x =x ln xx

⇒ ln y =
dx

d
ln x

dx

d
x

 

⋅
dx

dy
=

y

1
ln x+

2 x

1
x

x

 

=
dx

dy
y + 1 =(

x

1
(
2
ln x

)) + 1
x

x x

(
2
ln x

)

↑ 100cm /s3

↑?cm/s 50cm

V r V (r) = πr3
4 3

=
dt

dV
100 r = 25

dt

dr

∣
∣
∣
∣∣
∣

r=25
V (r) t

=
dt

dV
4πr ⋅2 ⇒

dt

dr
=

dt

dr
⋅

4πr2
1

dt

dV

⇒
dt

dr

∣
∣
∣
∣∣
∣

r=25

=
dt

dr
⋅

4π ⋅ 252
1

100 = cm/s
25π
1
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Sol. Set  is the distance between  and ,  is the distance between  
and  where  is the intersection. Let  is the distance between  and .

Also, 

When , we have  and .

 (a) Find the linearization of  at 

Sol. 

The linearization of  at  is 

(b) Use linear approximation to estimate 

Sol. 

x A C y B

C C z A B

=
dt

dx
−90;  =

dt

dx
−100

z =2 x +2 y2

(z ) =
dt

d 2 (x +
dt

d 2 y )2

z =2
dt

dz
x +2
dt

dx
2
dt

dy

x = 60, y = 80 z = 100 =
dt

dz
−134km/h

f(x) = sin x−1 x = 0.5

f(x) = sin x; f (x) =−1 ′

1 − x2

1

f x = 0.5 f(0.5) + f (0.5)(x−′ 0.5)

L(x) = +
6
π

x− =
1 − 4

1

1
(

2
1

) +
6
π

x−
3
2

(
2
1

)

sin 0.49−1

sin 0.49 ≈−1 L(0.49) = f(0.5) + f (0.5)(0.49 −′ 0.5)

= +
6
π

(−0.01) =
3

2
−

6
π

100 3

2
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 Compare  and  if  and  changes:

(a)  to 

Sol. 

From  to , 

(b)  to 

Sol. 

Δy dy y = f(x) = x +3 x −2 2x+ 1 x

2 2.05

Δy = f(2.05) − f(2) = 0.717625
dy = f (x)dx =′ (3x +2 2x− 2)dx

2 2.05 dx = 0.05 → dy = f (2) ⋅′ 0.05 = 14 ⋅ 0.05 = 0.7

2 2.01

Δy = f(2.01) − f(2) = 0.140701
dy = f (2)(2.01 −′ 2) = 14 ⋅ 0.01 = 0.14


