

Differentiation

POLYNOMIAL \& EXPONENT

1. $\frac{d}{d x} c=0, c$ is a constant
2. $\frac{d}{d x} x^{n}=n \cdot x^{n-1}, n$ is any real number

Proof. For the case n is a positive integer:

$$
\begin{aligned}
(a+b)^{n}= & a^{n}+C_{1}^{n} a^{n-1} b+\cdots+C_{n}^{n} b^{n} \\
\frac{d}{d x} x^{n} & =\lim _{h \rightarrow 0} \frac{(x+h)^{n}-x^{n}}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{n}+n x^{n-1} h+\cdots+h^{n}-x^{n}}{h} \\
& =\lim _{h \rightarrow 0} n x^{n-1}+\frac{n(n-1)}{2} x^{n-2}+h^{n-1} \\
& =n x^{n-1}
\end{aligned}
$$

TANGENT

The equation of the tangent line: $y-f(a)=f^{\prime}(a)(x-a)$
The equation of the normal line: $y-f(a)=\frac{-1}{f^{\prime}(a)}(x-a)$
Tangent line $\mathrm{L} m_{L} \cdot m_{P}=-1 \Rightarrow m_{P}=\frac{1}{m_{L}}=\frac{-1}{f^{\prime}(a)}$
m_{P} : slope of normal line

See Example 1

3. $\frac{d}{d x} c \cdot f(x)=c \cdot \frac{d}{d x} f(x)$
4. $\frac{d}{d x}[f(x) \pm g(x)]=\frac{d}{d x} f(x) \pm \frac{d}{d x} g(x)$
//NOTE// Where f and g are differentiable function
See Example 2
5. $\frac{d}{d x} e^{x}=e^{x}$

Proof. $\frac{d}{d x} e^{x}=\lim _{h \rightarrow 0} \frac{e^{x+h}-e^{x}}{h}=e^{x} \underbrace{\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}}_{1}=e^{x}$.
Recall the e number is the number such that $\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1$.

See Example 3

PRODUCT \& QUOTIENT

$$
=(f \cdot g)^{\prime} \neq f^{\prime} \cdot g^{\prime} ;\left(\frac{t}{g}\right)^{\prime} \neq \frac{f}{}_{\prime}^{\prime}
$$

1. Product rule
$f \cdot g$: differentiable function
$\Rightarrow f \cdot g$ is a differentiable function and $(f \cdot g)^{\prime}=f^{\prime} g+f g^{\prime}$

Proof.

$$
\begin{aligned}
& \begin{array}{l}
(f \cdot g)^{\prime} \\
= \\
\quad=\lim _{h \rightarrow 0} \frac{f(x+h) g(x+h)-f(x) g(x)}{h} \\
\quad \begin{aligned}
& \lim _{h \rightarrow 0} \frac{f(x+h) g(x+h)-f(x) g(x+h)+f(x) g(x+h)-f(x) g(x)}{h} \\
&=\underbrace{h}_{\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \cdot g(x+h)}
\end{aligned} \\
\quad \underbrace{\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h} \cdot f(x)}_{\text {exists }} \\
\quad=\underbrace{f^{\prime}(x) g(x)+f(x) g^{\prime}(x)}_{\text {exists }}
\end{array}
\end{aligned}
$$

//NOTE// Since f and g are differentiable

See Example 4 \& 5

2. Quotient rule

$$
\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} g-f g^{\prime}}{g^{2}}
$$

See Example 6 \& 7

TRIGONOMETRIC

$\frac{d}{d x} \sin x=\cos x$
$\frac{d}{d x} \cot x=-\csc ^{2} x$
$\frac{d}{d x} \cos x=-\sin x$
$\frac{d}{d x} \sec x=\sec x \tan x$
$\frac{d}{d x} \tan x=\sec ^{2} x$ $\frac{d}{d x} \csc x=-\csc x \cot x$

See Example 8
$\frac{d^{n}}{d x^{n}} \sin x=$
$\begin{cases}\cos x, & n=4 k+1 \\ -\sin x, & n=4 k+2 \\ -\cos x, & n=4 k+3 \\ \sin x, & n=4 k\end{cases}$
$\frac{d^{n}}{d x^{n}} \cos x=$
$\begin{cases}-\sin x, & n=4 k+1 \\ -\cos x, & n=4 k+2 \\ \sin x, & n=4 k+3 \\ \cos x, & n=4 k\end{cases}$
See Example 9

CHAIN RULE

$\frac{d}{d x}(x-1)^{2}=\frac{d}{d x}\left(x^{2}-2 x+1\right)=2 x-2$
$\frac{d}{d x}(x-1)^{2019}=$?
Idea. Set $u=x-1 \rightarrow \frac{d u}{d x}=1$
Known. $\frac{d}{d u} u^{2019}=2019 u^{2018}$

$$
\frac{d}{d u} u^{2019}=\frac{d u^{2019}}{d u} \cdot \frac{d u}{d x}=2019 u^{2018} \cdot 1
$$

$$
\Rightarrow \frac{d}{d x}(x-1)^{2019}=2019(x-1)^{2018}
$$

If g is differentiable at x and f is differentiable at $g(x)$, then the composite function $F=f \cdot g$ defined by $F(x)=f(g(x))$ is differentiable at x and $F^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)$. If we set $y=f(u), u=g(x), \frac{d f(u)}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}$. Given a $F(x)$, we want to find $y=f(u)$ and $u=g(x)$ such that:

1. $F(x)=f(g(x))$
2. $\frac{d}{d x} F(x)=\frac{d y}{d u} \cdot \frac{d u}{d x}$ //NOTE// Easier to compute

See Example 10 \& 11

POWER RULE

$$
\frac{d}{d x}[g(x)]^{n}=n \cdot[g(x)]^{n-1} \cdot g^{\prime}(x)
$$

See Example 12

$$
\frac{d}{d x} b^{x}=\ln b \cdot b^{x}, b>0 \text { is a constant }
$$

Proof. $b^{x}=\left(e^{\ln b}\right)^{x}=e^{\ln b \cdot x}$

$$
\frac{d}{d x} b^{x}=\frac{d}{d x} e^{\ln b \cdot x}=e^{\ln b \cdot x} \cdot \frac{d}{d x}(\ln b \cdot x)=b^{x} \cdot \ln b
$$

See Example 13

INVERSE

$f^{-1}(x)$ is an inverse function of a differentiable function f. Then f^{-1} is also differentiable function.

$$
\frac{d}{d x} f^{-1}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
$$

Proof. $f\left(f^{-1}(x)\right)=x \Rightarrow \frac{d}{d x} f\left(f^{-1}(x)\right)=\frac{d}{d x} x=1$

$$
\begin{aligned}
& \text { By chain rule, } f\left(f^{-1}(x)\right) \cdot \frac{d}{d x} f^{-1}(x)=1 \\
& \begin{aligned}
\therefore \frac{d}{d x} f^{-1}(x)= & \frac{1}{f^{\prime}\left(f^{-1}(x)\right)} \\
& \left(f^{-1}\right)^{\prime}(b)=\frac{1}{f^{\prime}(a)} \text { where } f(a)=b
\end{aligned}
\end{aligned}
$$

See Example 14

IMPLICIT

Circle: $x^{2}+y^{2}=25 \Rightarrow y=\sqrt{25-x^{2}}$ or $-\sqrt{25-x^{2}}$
//NOTE// y is depend on x

$$
\text { Q. } \quad \text { Hovto compute } \frac{d y}{d y}
$$

Method of implicit differentiation

Steps:

1. Differentiating both sides of the equation
2. Solving the equation obtain in step 1 for $\frac{d y}{d x}$

See Example 15-17

INVERSE

$$
\begin{aligned}
& \sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2} \\
& \tan ^{-1} x+\cot ^{-1} x=\frac{\pi}{2} \\
& \csc ^{-1} x+\sec ^{-1} x=\frac{\pi}{2} \\
& \frac{d}{d x} \sin ^{-1} x=\frac{1}{\sqrt{1-x^{2}}}
\end{aligned}
$$

Proof. Set $y=\sin ^{-1} x$, then $\sin y=x$. By implicit differentiation,

$$
\frac{d}{d x} \sin y=\frac{d}{d x} x \Rightarrow \cos y \cdot \frac{d y}{d x}=1 \Rightarrow \frac{d y}{d x}=\frac{1}{\cos y}
$$

Since $y=\sin ^{-1} x$, we have $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$ and $\cos y=\sqrt{1-\sin ^{2} y}=$ $\sqrt{1-x^{2}}$.

$$
\begin{aligned}
& \text { Therefore, } \frac{d}{d x} \sin ^{-1} x=\frac{1}{\sqrt{1-x^{2}}} \text {. } \\
& \frac{d}{d x} \cos ^{-1} x=\frac{d}{d x}\left(\frac{\pi}{2}-\sin ^{-1} x\right)=-\frac{1}{\sqrt{1-x^{2}}} \\
& \frac{d}{d x} \tan ^{-1} x=\frac{1}{1+x^{2}} \\
& \frac{d}{d x} \cot ^{-1} x=-\frac{1}{1+x^{2}} \\
& \frac{d}{d x} \sec ^{-1} x=\frac{1}{x \sqrt{x^{2}-1}} \\
& \frac{d}{d x} \csc ^{-1} x=-\frac{1}{x \sqrt{x^{2}-1}}
\end{aligned}
$$

See Example 18

LOGARITHMIC

$$
\frac{d}{d x} \ln x=\frac{1}{x}
$$

Proof. Set $y=\ln x$. We have $e^{y}=x$ and $\frac{d}{d x} e^{y}=\frac{d}{d x} x=1$.

$$
\Rightarrow e^{y} \cdot \frac{d y}{d x}=1 \Rightarrow \frac{d y}{d x}=\frac{1}{e^{y}}=\frac{1}{x}
$$

Proof. $\left(f^{-1}\right)^{\prime}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}$

$$
\begin{aligned}
& f(x)=e^{x} ; f^{-1}(x)=\ln x ; f^{\prime}(x)=e^{x} \\
& (\ln x)^{\prime}=\frac{1}{f^{\prime}(\ln x)}=\frac{1}{e^{\ln x}}=\frac{1}{x} \\
& \frac{d}{d x} \log _{a} x=\frac{1}{x \ln a}, a>0, a \neq 1
\end{aligned}
$$

Proof. $\log _{a} x=\frac{\ln x}{\ln a}$

$$
\begin{aligned}
& \frac{d}{d x} \log _{a} x=\frac{1}{\ln a} \cdot \frac{d}{d x} \overbrace{\ln x}^{\frac{1}{x}}=\frac{1}{x \ln a} \\
& \frac{d}{d x} \ln g(x)=\frac{g^{\prime}(x)}{g(x)} \Rightarrow g^{\prime}(x)=g(x) \cdot \frac{d}{d x} \ln g(x)
\end{aligned}
$$

//NOTE// By Chain Rule

See Example 19

Given $y=f(x) ; \frac{d y}{d x}=$?

1. $\ln y=\ln f(x)$

$$
\text { Simplify } \ln f(x)
$$

2. $y^{\prime}=y \cdot \frac{d}{d x} \ln f(x)$

$$
\frac{d}{d x} \ln g(x)=\frac{g^{\prime}(x)}{g(x)} \Rightarrow g^{\prime}(x)=g(x) \cdot \frac{d}{d x} \ln g(x)
$$

//NOTE// By Chain Rule

$$
\frac{d}{d x} \ln |x|=\frac{1}{x}, x \neq 0
$$

Proof. For $x>0, \frac{d}{d x} \ln |x|=\frac{d}{d x} \ln x=\frac{1}{x}$

$$
\text { For } x<0, \frac{d}{d x} \ln |x|=\frac{d}{d x} \ln (-x)=\frac{(-x)^{\prime}}{-x}=\frac{-1}{-x}=\frac{1}{x}
$$

See Example 20

$$
\frac{d}{d x}[f(x)]^{g(x)}
$$

See Example 21

$$
e=\lim _{h \rightarrow 0}(1+h)^{\frac{1}{h}}=\lim _{h \rightarrow \infty}\left(1+\frac{1}{h}\right)^{h}
$$

Proof. $f(x)=\ln x ; f^{\prime}(x)=\frac{1}{x} ; f^{\prime}(1)=1$

$$
\begin{aligned}
& 1=f^{\prime}(1)=\lim _{h \rightarrow 0} \frac{\ln (1+h)-\ln 1}{h}=\lim _{h \rightarrow 0}(1+h)^{\frac{1}{h}} \\
& e=e^{1}=e^{\lim _{h \rightarrow 0} \ln (1+h)^{\frac{1}{h}}}=\underbrace{\ln ^{\ln \left(\lim _{h \rightarrow 0}(1+h)^{\frac{1}{2}}\right)}}_{\ln x \text { is continuous }}=\lim _{h \rightarrow 0}(1+h)^{\frac{1}{h}} \\
& \text { Set } h=\frac{1}{n} ; n \rightarrow \infty \Rightarrow h \rightarrow 0^{+} \\
& \lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=\lim _{h \rightarrow 0^{+}}(1+h)^{\frac{1}{h}}=e \\
& \qquad e^{x}=\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}
\end{aligned}
$$

RELATED RATES

Given $y=f(u) ; u=g(t)$
$\frac{d y}{d u}=$ the rate of change of y with respect to u
$\frac{d u}{d t}=$ the rate of change of u with respect to t

How to know the rate of change of y with respect to t ?
A.

By chain rule, $\frac{d y}{d t}=\frac{d y}{d u} \cdot \frac{d u}{d t}$.

See Example 22 \& 23

LINEAR APPROXIMATION

By definition of the derivative, we have $f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$.
By definition of limit, we have $\frac{f(x)-f(a)}{x-a} \approx f^{\prime}(a)$ when $x \approx a$.
Then the approximation $f(x) \approx f(a)+f^{\prime}(a)(x-a)$ is called the linear approximation of f at $x=a$.
Def. $L(x)=f(a)+f^{\prime}(a)(x-a)$ is called the linearization of f at a.
See Example 24

DIFFERENTIALS

$y=f(x) ; f:$ differentiable function
The differential $d y$ is defined by $d y=f^{\prime}(x) d x \Rightarrow \frac{d y}{d x}=f^{\prime}(x)$
$\Delta x:$ change in x. The corresponding change in y is $\Delta y=f(x+\Delta x)-f(x)$ \I Change of f from x to $x+\Delta x$
$\backslash d x=\Delta x$
See Example 25

CONCLUSION

1. When Δx becomes smaller, the approximation $\Delta y \approx d y$ becomes better.
2. For more complicated function, to estimate the change, the differential is useful.

MARGINAL COST

$C(x)$: cost function

$$
C(x+1)-C(x) \approx C^{\prime}(x)
$$

EXAMPLES

1. Find the tangent line and normal line to the curve $y=x \sqrt{x}$ at $(1,1)$

Sol. $y=x^{\frac{3}{2}} ; \frac{d y}{d x}=\frac{3}{2} x^{\frac{1}{2}}$
The equation of the tangent line is

$$
\begin{aligned}
y-1=\frac{3}{2}(1)^{\frac{1}{2}}(x-1) \rightarrow & y-1=\frac{3}{2} x-\frac{3}{2} \\
y & =\frac{3}{2} x-\frac{1}{2}
\end{aligned}
$$

The equation of the normal line is

$$
\begin{gathered}
y-1=\frac{-1}{\frac{3}{2}(1)^{\frac{1}{2}}}(x-1) \rightarrow y-1=-\frac{2}{3} x+\frac{2}{3} \\
y=-\frac{2}{3} x+\frac{5}{3}
\end{gathered}
$$

2. Find the points on the curve $y=x^{4}-6 x^{2}+4$ where the tangent line is horizontal
Sol. $y^{\prime}=4 x^{3}-12 x$
The tangent line is horizontal means $y^{\prime}=0$. To solve $y^{\prime}=0$, we have
$4 x^{3}-12 x=0 \Rightarrow x=0, \pm \sqrt{3}$. So, the points are $(0,4),(\sqrt{3},-5),(-\sqrt{3},-5)$.
3. At what point on the curve $y=e^{x}$ is the tangent line parallel to the line $y=2 x$?

Sol. Since the tangent line is parallel to the line $y=2 x$, we have $y^{\prime}=2$.
So, we need to solve $2=y^{\prime}=e^{x}$. Then we have $x=\ln 2$. Therefore, the point is $\left(\ln 2, e^{\ln 2}\right) \rightarrow(\ln 2,2)$.
4. (a) $f(x)=x e^{x} ; f^{\prime}(x)=$?

$$
u=x \rightarrow u^{\prime}=1
$$

$$
\begin{aligned}
& v=e^{x} \rightarrow v^{\prime}=e^{x} \\
& f^{\prime}(x)=e^{x}+x e^{x}=e^{x}(1+x)
\end{aligned}
$$

(b) $f^{\prime \prime}(x)=$?

$$
\begin{aligned}
& u=e^{x} \rightarrow u^{\prime}=e^{x} \\
& v=1+x \rightarrow v^{\prime}=1 \\
& f^{\prime \prime}(x)=e^{x}(1+x)+e^{x}=e^{x}(2+x)
\end{aligned}
$$

Therefore, $f^{n}(x)=(x+n) e^{x}$. To prove $f^{n}(x)=(x+n) e^{x}$, we use the induction.

For $n=1$,

$$
f^{\prime}(x)=(x+1) e^{x} .
$$

Assume $n=k$,

$$
f^{k}(x)=(x+k) e^{x} .
$$

For $n=k+1$,

$$
f^{k+1}(x)=\left[(x+k) e^{x}\right]^{\prime}=e^{x}+(x+k) e^{x}+(x+(k+1)) e^{x} .
$$

By induction, we have $f^{n}(x)=(n+x) e^{x}$.
5. $f(x)=\sqrt{x} g(x) ; g(4)=2 ; g^{\prime}(4)=3 ; f^{\prime}(4)=$?

Sol. $f^{\prime}(x)=(\sqrt{x})^{\prime} g(x)+\sqrt{x} g^{\prime}(x)$

$$
f^{\prime}(4)=\frac{1}{2}(4)^{-\frac{1}{2}} \cdot 2+\sqrt{4} \cdot 3=6 \frac{1}{2}
$$

6. $y=\frac{x^{2}+x-2}{x+6} ; y^{\prime}=$?

Sol. $u=x^{2}+x-2 \rightarrow u^{\prime}=2 x+1$
$v=x+6 \rightarrow v^{\prime}=1$
$\left(\frac{f}{g}\right)^{\prime}=\frac{(2 x+1)(x+6)-\left(x^{2}+x-1\right)}{(x+6)^{2}}$
7. $F(x)=\frac{3 x^{2}+2 \sqrt{x}}{x} ; F^{\prime}(x)=$?

Sol. $F(x)=\frac{3 x^{2}+2 \sqrt{x}}{x}=3 x+2 x^{-\frac{1}{2}}$

$$
F^{\prime}(x)=3+2\left(-\frac{1}{2}\right) x^{-\frac{3}{2}}=3-x^{-\frac{3}{2}}
$$

8. $f(x)=\frac{\sec x}{1+\tan x}, f(x)=$? What value of x does the graph of $f(x)$ has a horizontal tangent?
Sol. $f(x)=\frac{\frac{1}{\cos x}}{1+\frac{\sin x}{\cos x}}=\frac{\frac{1}{\cos x}}{\frac{(\cos x+\sin x)}{\cos x}}=\frac{1}{\sin x+\cos x}$
$f^{\prime}(x)=\frac{0-(\cos x-\sin x)}{(\sin x+\cos x)^{2}}=\frac{\sin x-\cos x}{(\sin x+\cos x)^{2}}$
The graph of f has a horizontal tangent at x means $f^{\prime}(x)=0$.

$$
f^{\prime}(x)=0 \rightarrow-\cos x+\sin x=0 \rightarrow \sin x=\cos x \rightarrow \tan x=1 \rightarrow
$$

$x=\frac{\pi}{4}+n \pi, n$ is any integer.
9. $\frac{d^{2}}{d x^{2}} x=-x \Rightarrow x=\sin x$
10. $f(x)=\sqrt{x^{2}+1} ; f^{\prime}(x)=$?

Sol. Set $u=x^{2}+1 ; \frac{d u}{d x}=2 x ; y=\sqrt{u} ; \frac{d y}{d u}=\frac{1}{2 \sqrt{u}}$
$f^{\prime}(x)=\frac{d y}{d u} \cdot \frac{d u}{d x}=\frac{1}{2 \sqrt{u}} \cdot 2 x=\frac{x}{\sqrt{x^{2}+1}}$
If we set $u=x^{2} ; y=\sqrt{u+1} ; \frac{d y}{d u}=? \times$
11. $\frac{d}{d x} \sin ^{2} x=$?

Sol. Set $u=\sin x ; y=u^{2} ; \frac{d u}{d x}=\cos x ; \frac{d y}{d u}=2 u$
By chain rule, $\frac{d}{d x} \sin ^{2} x=\frac{d y}{d u} \cdot \frac{d u}{d x}=2 u \cdot \cos x=2 \sin x \cos x=$ $\sin 2 x$
12. $f(x)=\frac{1}{\sqrt[3]{x^{2}+x+1}} ; f^{\prime}(x)=$?

Sol. $f^{\prime}(x)=-\frac{1}{3}\left(x^{2}+x+1\right)^{-\frac{4}{3}} \cdot \frac{d}{d x}\left(x^{2}+x+1\right)=-\frac{1}{3}\left(x^{2}+x+\right.$ $1)^{-\frac{4}{3}}(2 x+1)$
13. $f(x)=\sin (\cos (\tan x)) ; f^{\prime}(x)=$?

Sol. $f^{\prime}(x)=\cos (\cos (\tan x)) \cdot \frac{d}{d x} \cos (\tan x)$

$$
=\cos (\cos (\tan x)) \cdot(-\sin (\tan x)) \cdot \frac{d}{d x} \tan x
$$

$$
=-\cos (\cos (\tan x)) \cdot \sin (\tan x) \cdot \sec ^{2} x
$$

14. $f(4)=5 ; f^{\prime}(4)=\frac{2}{3} ;\left(f^{-1}\right)^{\prime}(5)=$?

Sol. $\left(f^{-1}\right)^{\prime}(5)=\frac{1}{f^{\prime}\left(f^{-1}(5)\right)} ;$ since $f(4)=5, f^{-1}(5)=4$

$$
\left(f^{-1}\right)^{\prime}(5)=\frac{1}{f^{\prime}(4)}=\frac{3}{2}
$$

15. (a) $x^{2}+y^{2}=25 ; \frac{d y}{d x}=$?

Sol. $\frac{d}{d x}\left(x^{2}+y^{2}\right)=\frac{d}{d x} 25 \Rightarrow \frac{d}{d x} x^{2}+\frac{d}{d x} \underbrace{y^{2}}_{y=f(x)}=0$
By chain rule, $2 x+2 y \frac{d y}{d x}=0 \Rightarrow \frac{d y}{d x}=-\frac{x}{y}$
(b) The equation of the tangent to the circle $x^{2}+y^{2}=25$ at $(3,4)$

Sol. The slope of the equation tangent is

$$
\left.\frac{d y}{d x}\right|_{(x, y)=(3,4)}=-\frac{3}{4}
$$

The equation of the tangent is $(y-4)=-\frac{3}{4}(x-3)$.
16. y^{\prime} if $\sin (x+y)=y^{2} \cos x$

$$
\begin{aligned}
& \text { Sol. } \frac{d}{d x}(\sin (x+y))=\frac{d}{d x}\left(y^{2} \cos x\right) \\
& \cos (x+y) \cdot \frac{d}{d x}(x+y)=\left(\frac{d}{d x} y^{2}\right) \cos x+y^{2}\left(\frac{d}{d x} \cos x\right) \\
& \cos (x+y)\left(1+\frac{d y}{d x}\right)=2 y \frac{d y}{d x} \cos x+(-\sin x) y^{2} \\
& \cos (x+y)+\cos (x+y) \frac{d y}{d x}=2 y \cos x \frac{d y}{d x}-y^{2} \sin x \\
& (\cos (x+y)-2 y \cos x) \frac{d y}{d x}=-y^{2} \sin x-\cos (x+y) \\
& \frac{d y}{d x}=\frac{y^{2} \sin x+\cos (x+y)}{2 y \cos x-\cos (x+y)}
\end{aligned}
$$

17. $y^{\prime \prime}$ if $x^{4}+y^{4}=16$

Sol. $\frac{d}{d x}\left(x^{4}+y^{4}\right)=\frac{d}{d x} 16 \Rightarrow 4 x^{3}+4 y^{3} \frac{d y}{d x}=0 \Rightarrow \frac{d y}{d x}=-\frac{x^{3}}{y^{3}}$

$$
\begin{aligned}
y^{\prime \prime} & =\left(y^{\prime}\right)^{\prime}=\left(-\frac{x^{3}}{y^{3}}\right)^{\prime}=\frac{-3 x^{2} y^{3}+x^{3} \cdot 3 y^{2} \frac{2 y}{d x}}{y^{6}} \\
& =\frac{-3 x^{2} y^{3}+x^{3} \cdot 3 y^{2}\left(-\frac{x^{3}}{y^{3}}\right)}{y^{6}}=\frac{-3 x^{2} y^{3}-3 x^{6} y^{-1}}{y^{6}} \\
& =\frac{-3 x^{2}(\overbrace{y^{4}+x^{4}}^{16})}{y^{7}}=-48 x^{2} y^{-7}
\end{aligned}
$$

18. $f(x)=x \tan ^{-1} \sqrt{x} ; f^{\prime}(x)=$?

Sol. $f^{\prime}(x)=x^{\prime} \tan ^{-1} \sqrt{x}+x\left(\tan ^{-1} \sqrt{x}\right)^{\prime}$

$$
\begin{aligned}
& =\tan ^{-1} \sqrt{x}+x \cdot \frac{1}{2} x^{-\frac{1}{2}} \cdot \frac{1}{1+x} \\
& =\tan ^{-1} \sqrt{x}+\frac{\sqrt{x}}{2(1+x)}
\end{aligned}
$$

19. $\frac{d}{d x} \ln \left(\frac{x+1}{\sqrt{x-2}}\right)$

Sol. $\frac{d}{d x} \ln \underbrace{\left(\frac{x+1}{\sqrt{x-2}}\right)}_{g(x)}=\frac{1}{\frac{x+1}{\sqrt{x-2}}}\left(\frac{x+1}{\sqrt{x-2}}\right)^{\prime}=\frac{\sqrt{x-2}}{x+1}$.
$\frac{\sqrt{x-2}-\binom{g(x)}{(x+1)} \cdot \frac{1}{2 \sqrt{x-2}}}{(\sqrt{x-2})^{2}}$

$$
=\frac{(x-2)-\frac{x+1}{2}}{(x+1)(x-2)}=\frac{x-5}{2(x+1)(x-2)}
$$

Sol. $\ln \frac{x+1}{\sqrt{x-2}}=\ln (x+1)-\frac{1}{2} \ln (x-2)$

$$
\begin{aligned}
\frac{d}{d x} \ln \frac{x+1}{\sqrt{x-2}} & =\frac{d}{d x} \ln (x+1)-\frac{1}{2} \cdot \frac{d}{d x} \ln (x-2) \\
& =\frac{1}{x+1}-\frac{1}{2(x-2)}=\frac{x-5}{2(x+1)(x-2)}
\end{aligned}
$$

20. $y=\frac{x^{\frac{4}{3}} \sqrt{x^{2}+1}}{(3 x+2)^{5}} ; y^{\prime}=$?

Sol. $\ln y=\ln \frac{x^{\frac{4}{3}} \sqrt{x^{2}+1}}{(3 x+2)^{5}}=\frac{4}{3} \ln x+\frac{1}{2} \ln \left(x^{2}+1\right)-5 \ln (3 x+2)$

$$
\begin{gathered}
\frac{d}{d x} \ln y=\frac{4}{3} \cdot \frac{1}{x}+\frac{1}{2} \cdot \frac{2 x}{x^{2}+1}-5 \cdot \frac{3}{3 x+2} \\
\frac{d y}{d x}=y\left(\frac{4}{3 x}+\frac{x}{x^{2}+1}-\frac{15}{3 x+2}\right)= \\
\frac{x^{\frac{4}{3}} \sqrt{x^{2}+1}}{(3 x+2)^{5}}\left(\frac{4}{3 x}+\frac{x}{x^{2}+1}-\frac{15}{3 x+2}\right)
\end{gathered}
$$

21. $y=x^{\sqrt{x}} ; y^{\prime}=$?

Sol. $\ln y=\ln x^{\sqrt{x}}=\sqrt{x} \ln x$

$$
\begin{aligned}
\Rightarrow & \frac{d}{d x} \ln y=\frac{d}{d x} \sqrt{x} \ln x \\
& \frac{d y}{d x} \cdot \frac{1}{y}=\frac{1}{2 \sqrt{x}} \ln x+\frac{\sqrt{x}}{x} \\
& \frac{d y}{d x}=y\left(\frac{1}{\sqrt{x}}\left(\frac{\ln x}{2}+1\right)\right)=\frac{x^{\sqrt{x}}}{\sqrt{x}}\left(\frac{\ln x}{2}+1\right)
\end{aligned}
$$

22. There is a balloon is a balloon.

Volume $\uparrow 100 \mathrm{~cm}^{3} / \mathrm{s}$
radius $\uparrow ? \mathrm{~cm} / \mathrm{s}$ when diameter $=50 \mathrm{~cm}$
Sol. Set V is the volume, r is the radius. Then $V(r)=\frac{4}{3} \pi r^{3}$. By assumption, $\frac{d V}{d t}=100$ and $r=25$. We want to know $\left.\frac{d r}{d t}\right|_{r=25}$. Differentiating $V(r)$ on both sides with the respect to t, we have

$$
\begin{gathered}
\frac{d V}{d t}=4 \pi r^{2} \cdot \frac{d r}{d t} \Rightarrow \frac{d r}{d t}=\frac{1}{4 \pi r^{2}} \cdot \frac{d V}{d t} \\
\left.\frac{d r}{d t}\right|_{r=25} \Rightarrow \frac{d r}{d t}=\frac{1}{4 \pi \cdot 25^{2}} \cdot 100=\frac{1}{25 \pi} \mathrm{~cm} / \mathrm{s}
\end{gathered}
$$

23.

Sol. Set x is the distance between A and C, y is the distance between B and C where C is the intersection. Let z is the distance between A and B.

$$
\begin{aligned}
& \frac{d x}{d t}=-90 ; \frac{d x}{d t}=-100 \\
& \text { Also, } z^{2}=x^{2}+y^{2} \\
& \frac{d}{d t}\left(z^{2}\right)=\frac{d}{d t}\left(x^{2}+y^{2}\right) \\
& \not 2 z \frac{d z}{d t}=\not 2 x \frac{d x}{d t}+\not 2 \frac{d y}{d t}
\end{aligned}
$$

When $x=60, y=80$, we have $z=100$ and $\frac{d z}{d t}=-134 \mathrm{~km} / \mathrm{h}$.
24. (a) Find the linearization of $f(x)=\sin ^{-1} x$ at $x=0.5$

Sol. $f(x)=\sin ^{-1} x ; f^{\prime}(x)=\frac{1}{\sqrt{1-x^{2}}}$
The linearization of f at $x=0.5$ is $f(0.5)+f^{\prime}(0.5)(x-0.5)$

$$
L(x)=\frac{\pi}{6}+\frac{1}{\sqrt{1-\frac{1}{4}}}\left(x-\frac{1}{2}\right)=\frac{\pi}{6}+\frac{2}{\sqrt{3}}\left(x-\frac{1}{2}\right)
$$

(b) Use linear approximation to estimate $\sin ^{-1} 0.49$

Sol. $\sin ^{-1} 0.49 \approx L(0.49)=f(0.5)+f^{\prime}(0.5)(0.49-0.5)$

$$
=\frac{\pi}{6}+\frac{2}{\sqrt{3}}(-0.01)=\frac{\pi}{6}-\frac{2}{100 \sqrt{3}}
$$

25. Compare Δy and $d y$ if $y=f(x)=x^{3}+x^{2}-2 x+1$ and x changes:
(a) 2 to 2.05

Sol. $\Delta y=f(2.05)-f(2)=0.717625$

$$
d y=f^{\prime}(x) d x=\left(3 x^{2}+2 x-2\right) d x
$$

$$
\text { From } 2 \text { to } 2.05, d x=0.05 \rightarrow d y=f^{\prime}(2) \cdot 0.05=14 \cdot 0.05=0.7
$$

(b) 2 to 2.01

Sol. $\Delta y=f(2.01)-f(2)=0.140701$

$$
d y=f^{\prime}(2)(2.01-2)=14 \cdot 0.01=0.14
$$

